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While the link between thermoregulation and aging is generally accepted, much further research, reflection, and
debate is required to elucidate the physiological and molecular pathways that generate the observed thermal-induced
changes in lifespan. Our aim in this review is to present, discuss, and scrutinize the thermoregulatory mechanisms that
are implicated in the aging process in endotherms and ectotherms. Our analysis demonstrates that low body
temperature benefits lifespan in both endothermic and ectothermic organisms. Research in endotherms has delved
deeper into the physiological and molecular mechanisms linking body temperature and longevity. While research in
ectotherms has been steadily increasing during the past decades, further mechanistic work is required in order to fully
elucidate the underlying phenomena. What is abundantly clear is that both endotherms and ectotherms have a specific
temperature zone at which they function optimally. This zone is defended through both physiological and behavioral
means and plays a major role on organismal senescence. That low body temperature may be beneficial for lifespan is
contrary to conventional medical theory where reduced body temperature is usually considered as a sign of underlying
pathology. Regardless, this phenomenon has been targeted by scientists with the expectation that advancements may
compress morbidity, as well as lower disease and mortality risk. The available evidence suggests that lowered body
temperature may prolong life span, yet finding the key to temperature regulation remains the problem. While we are
still far from a complete understanding of the mechanisms linking body temperature and longevity, we are getting
closer.

Introduction

The earliest scientific reference of centenarian longevity comes
from the astronomer Hipparchus of Nicea who confirmed that
Democritus of Abdera lived 109 y (c. 470/460 – c. 370/360
BC).1 While such extended life spans appear relatively often now-
adays, aging and longevity are among of the most rapidly advanc-
ing areas in biological research, with an ever-increasing number
of physiological, molecular, pharmacological, and dietary factors
being implicated in organismal senescence that may serve as tar-
gets for treatment. In this light, evidence-based research indicates
that the rate of aging is mainly determined by genetics, environ-
mental factors, and lifestyle choices.2,3 Interestingly, while a large
number of gene variants are associated with aging, they explain a
small fraction of hereditary longevity.4,5 Indeed, a number of
studies have shown that only 23–33% of lifespan variation can
be attributed to genetic factors, while the rest is determined by
behavior and environmental factors (Fig. 1).2,5-7 Therefore, it
appears that the accumulation of molecular disorder that contrib-
utes to somatic deterioration is subject to considerable plasticity.
Among the most important environmental factors known to

affect longevity is body temperature (Tb) and the majority of the
available evidence suggests that increased Tb leads to shorter life-
span.3 However, while the link between thermoregulation and
aging is generally accepted, much further research, reflection, and
debate is required to elucidate the physiological and molecular
pathways that generate the observed thermal-induced changes in
lifespan. Our aim in this review is to present, discuss, and scruti-
nize the thermoregulatory mechanisms that are implicated in the
aging process in endotherms and ectotherms. We hope that this
comparative approach will aid our understanding of aging and
longevity and will contribute toward future advancements that
could compress morbidity and lower disease and mortality risk.

Aging, Physiology, and Functional Integrity

Aging encapsulates all time-induced phenomena occurring
during an organism’s lifespan. While the term ‘aging’ is often
used to describe the accumulation of molecular disorder that con-
tributes to somatic deterioration (Fig. 1), aging is not always
associated with a decline in structural or functional integrity. For
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instance, aging in the first quarter (or more) of an organism’s life-
time is associated with significant growth and marked improve-
ments in a broad range of physiological functions. At the other end
of the life span, aging in the final quarter (or more) of an organism’s
lifetime is associated with tissue damage and physical decline, usu-
ally linked with underlying pathologies and disease susceptibility
(Fig. 1). This latter form of aging will be the principal focus of the
current review. Specifically, we present the available state of knowl-
edge in endotherms and ectotherms regarding the link between
thermoregulation and different physiological adaptations that lead
to loss of functional capability and senescence.

Body Temperature and Longevity

In all organisms, Tb is affected by many factors and exerts
pleiotropic effects that influence almost all bodily systems and
organs. As such, its impact on aging and longevity has been diffi-
cult to isolate. Nevertheless, the effects of reduced Tb on health
and longevity have been circulating since 1917 (reviewed in
South et al., 1972)8, and it is now unanimously accepted that
low Tb benefits lifespan.3,9-12 For instance, men exhibiting Tb
below the median demonstrated significantly higher survival rates
over 25 y of follow-up in the Baltimore Longitudinal Study of
Aging.12 In mice, reducing Tb through genetic manipulation
results in 20% increase in life span,9 while male C57B1/6 mice
(one of the most common inbred strain of laboratory mice) dis-
play a lower Tb and live longer than their female peers.13 Similar
results are also observed in ectotherms, where many organisms,
including fish, butterflies, and C. elegans, demonstrate increased
lifespan at low ambient temperatures.14-18 Interestingly, the gen-
eral understanding until recently was that Tb is an indicator of
metabolic rate19 and, therefore, it merely portrays the effect of
altered metabolic rates on longevity. However, recent data
revealed that thermosensory neurons involved in thermoregula-
tory behavior play a key role in determining lifespan.17,20,21 This

discovery brought forth the interesting view that thermal sensa-
tion serves as a vital input for organismal homeostasis in addition
to its role in regulating behavioral and autonomic
thermoregulation.

Endothermy and Longevity

Endothermic thermoregulation
The defining characteristic of endotherms is the maintenance of

their internal environment at a metabolically favorable temperature
achieved primarily through heat released by internal bodily func-
tions (instead of almost complete dependence on ambient heat, as
seen in ectotherms). This internal heat release originates primarily
from routine metabolism since the fundamental chemical reactions
generating ATP are highly inefficient. Indeed, dissipation of the
electrochemical gradient produced when electrons are pumped
across the mitochondrial inner membrane occurs not only by pro-
tons entering the mitochondrial matrix through ATP synthase (in a
process that generates ATP) but also by protons bypassing the ATP
synthase entrance and returning to the mitochondrial matrix
through uncoupling agents (such as thyroxine and uncoupling pro-
tein 1). The latter process converts the energy of the electrochemical
gradient to heat and represents approximately 70–95% of the
energy released through substrate oxidation.

Under conditions of cold exposure or low metabolic activity,
endotherms employ heat production mechanisms to maintain
Tb at the desired level. These mechanisms include shivering (i.e.,
increased muscle metabolism leading to heat release as described
above) and non-shivering (i.e., uncoupled oxidative metabolism
in brown adipose tissue) thermogenesis. The latter depends
entirely on the function of uncoupling protein1,22,23 a mitochon-
drial inner membrane protein that is expressed exclusively in
brown adipose tissue.24,25 The presence of uncoupling protein 1
in brown adipocytes provides an alternative biochemical pathway
compared to the rest of eukaryotic cells, which results in the

Figure 1. The age-associated increase in pathophysiology/disease susceptibility leading to tissue damage and physical decline, as well as the impact of
genetic and environmental factors.
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production of heat instead of ATP. Indeed, brown adipocytes
express large amounts of uncoupling protein 1 which allows pro-
tons to bypass the ATP synthase entry and return to the mito-
chondrial matrix. Through this process, the energy of the
electrochemical gradient is dissipated as heat.22,26,27

In addition to heat production, endotherms employ also heat
conservation (sympathetic cutaneous vasoconstriction and blood
redistribution), heat loss (cholinergic cutaneous vasodilation and
eccrine sweating), and behavioral thermoregulation (conscious
decisions directly aiming at Tb regulation) mechanisms (Fig. 2).
These powerful mechanisms (reviewed in detail elsewhere)28-31

allow endotherms to maintain their internal environment at a
metabolically favorable temperature.

Mechanisms linking low Tb and longevity in endotherms
The beneficial effects of low Tb on longevity are contrary to

conventional medical theory where reduced Tb is usually consid-
ered as a sign of underlying pathology, particularly in the
elderly.32-37 Nevertheless, studies in mice show that low Tb
extends life span by exploiting metabolic pathways that are
known to attenuate autoimmunity in old age.38 Further contra-
dicting common medical theory, reduced Tb has been shown to
augment resistance to environmental stressors such as irradia-
tion.38,39 In addition, low Tb has been shown to favorably influ-
ence immune function (reviewed in Walsh and Whitham,
2006).40 Specifically, core temperature reductions of 0.5�C41

and 0.6�C42 result in elevated natural killer cell activity, while
further attenuation to
0.8�C in core tempera-
ture does not affect total
leukocyte numbers,43 and
a 1�C core temperature
drop during surgery leads
to reduced lymphocyte
proliferation and inter-
leukin 2 production 24
and 48 hours post sur-
gery.44 More impor-
tantly, chronic reductions
in Tb, have been shown
to either benefit45,46 or
not hamper47 immune
responsiveness. These
results are in line with in
vitro experiments show-
ing that monocytes incu-
bated for one hour at
34�C killed a greater
number of E. coli com-
pared with incubation for
one hour at 37�C.48

Chronic attenuation of
Tb in mice via repeated
cold exposure induces
heat shock proteins in
brown adipose tissue,

with increased binding of heat shock transcription factors to
DNA that may contribute to the development of cold toler-
ance.49-51 The transcription of heat shock proteins is initiated by
norepinephrine after binding to brown adipose tissue adrenergic
receptors. In turn, the heat shock proteins facilitate the transloca-
tion and activity of the enzymes involved in heat generation and
may interfere with the inflammatory response mediated by tumor
necrosis factor a.49,50,52 Therefore, it could be cautiously pro-
posed that low Tb may lead to increased lifespan through benefi-
cial effects on immune function. However, the link between low
Tb and immune function is not completely understood, while
the connections between inflammation and immune function
with low Tb appear to depend on the severity of the stress
imposed by the extent and duration of the cold exposure, as well
as the acclimation level of the individual.53-55 Indeed, cold expo-
sure that is sufficiently severe to induce an unremitting stress
leads to augmented cortisol production and, in turn, immuno-
suppressive response.54 Therefore, while cold acclimation leads
to suppressed cortisol response53 and immune system activa-
tion,45 the overall immune response to cold exposure appears to
be context-dependent especially in non-acclimated individuals.

In a previous study we showed that being born during the
colder seasons of the year is associated with increased birth
weight, gestational age, and longevity, as well as with lower risk
of fetal growth restriction, and premature birth.56 In contrast,
being born during the warmer seasons is negatively associated
with birth weight, gestational age, and longevity.56 These

Figure 2. The key avenues of heat exchange between the body and the environment that, ultimately, determine body
temperature in endotherms and ectotherms.
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findings are supported by European and African data showing
that birth weight and longevity are positively associated with
being born during the colder seasons but negatively associated
with being born during the remaining periods of the year.57-59

These data support the notion that the rate of aging may be
affected by low Tb at critical periods of early development. It is
well known that the fragile biochemical equilibrium of the mam-
malian intrauterine environment is significantly associated with
environmental factors.60-64 Therefore, it could be proposed that
low Tb during pregnancy and early development may be linked
to permanent structural, functional, and metabolic changes,
which, in turn, can lead to physiological or metabolic
‘programming’ of the newborn with beneficial effects on longev-
ity. One example of early-life programming that may be benefi-
cial for long term health and longevity pertains to brown adipose
tissue which is maximally recruited at birth in response to the
cold challenge of the extra-uterine environment.65 While the
extent to which brown adipose tissue content and function dur-
ing adulthood are affected by early-life factors remains to be
established, the available data in mammals show that the physiol-
ogy of this tissue during early life is dependent on the exposure
of the offspring to the cool temperature challenge of the extra-
uterine environment.66,67 At this point, it is important to note
that the aforementioned link between rate of aging and low Tb
may, in fact, reflect differences in tissue perfusion (i.e., low tissue
perfusion) and/or metabolism. Nevertheless, this contention
remains to be explored by future studies.

The beneficial effects of low Tb on health outcomes and, in
turn, longevity, may be explained, at least in part, by enhanced
activity of uncoupling proteins. Uncoupling protein 1 is a
transporter located in the inner mitochondrial membrane of
brown adipose tissue. Its role is to enhance proton conductivity
by uncoupling ATP production from substrate oxidation result-
ing in heat production when the animal is exposed to a cold
environment (reviewed in Rial and Zardoya, 2009).68 When
maintained in a standard housing temperature (23�C), uncou-
pling protein 1 deficient mice develop an age-associated
increase in diet-induced obesity.69 Uncoupling protein 2
knock-out mice reveal increased prevalence for autoimmune
diabetes characterized by increased macrophage infiltration of
islets, enhanced interleukin 1b and nitric oxide production
from macrophages, as well as augmented molecular damage
induced by reactive oxygen species.70 In humans, obesity has
been genetically associated with attenuated uncoupling protein
1 gene expression caused by an uncoupling protein 1 promoter
polymorphism.71 Furthermore, acceleration of cellular respira-
tion resulting from uncoupled oxidative phosphorylation for
the purpose of heat release leads to attenuated production of
reactive oxygen species (reviewed in Rial and Zardoya, 2009).68

Consequently, uncoupling proteins have been recognized as key
players in the antioxidant defense system of eukaryotes68 and
their activity may explain, at least in part, the improved health
and increased longevity associated with a low Tb.

Body mass represents the capacity of the body to store heat
and it is linearly associated with Tb in most species. In humans,
increased body mass72,73 and obesity74 are associated with higher

Tb independently of age. A reduction in white adipose tissue
content in low Tb animals is a relevant consistency that has sig-
nificant health implications.3 For example, increased adiposity
has been linked to high levels of inflammation which, in turn,
have been associated with several chronic diseases.75,76 Moreover,
it is worth noting that the link between Tb and obesity has been
also assessed through environmental observations, demonstrating
that continuous exposure to neutral or high ambient tempera-
tures may partly contribute to the obesity epidemic.77 Based on
these findings, it could be argued that the inverse association
between Tb and longevity may reflect, at least in part, the well-
known78,79 pathophysiological processes related to obesity. On
the same topic, chronic low Tb is also known to result from calo-
ric restriction.80,81 Some have argued, therefore, that part of the
longevity conferred by Tb may be due to caloric restriction, or
vice versa.11 However, an elegant study by Conti and colleagues9

has provided solid evidence that Tb has an independent role in
determining lifespan. In that study, chronic low Tb in transgenic
mice resulted in a 12% and 20% increase in median lifespan
from birth, in male and female mice, respectively. Interestingly,
these transgenic animals gained body mass during this study
without a significant change in food intake, a finding that effec-
tively dissociates the longevity effect of low Tb from that of calo-
ric restriction. Nevertheless, the fact that low Tb may reflect, at
least in part, the beneficial effects of caloric restriction on longev-
ity cannot be ruled out.9 The proposed mechanisms linking calo-
ric restriction and Tb as well as their beneficial effects on
longevity are illustrated in Figure 3.

Ectothermy and Longevity

Ectothermic thermoregulation
While Tb in endotherms is mainly determined and controlled

by cellular metabolism,82 ectotherms regulate Tb mainly though
behavioral mechanisms.83 Thermoregulation in ectothermic
organisms is a neuronal process and, interestingly, the pathways
that link thermal stimuli to metabolic acclimation in ectotherms
are comparable to those associated with thermoregulation in
endotherms. Specifically, the afferent signals originated in ther-
mosensory receptors are conducted through the dorsal horn of
the medulla, reach the hypothalamus, and are translated as effer-
ent sympathetic outflows that stimulate transcriptional regulators
of metabolic processes and behavioral mechanisms to maintain a
constant internal environment relative to external environmental
variation.82,84-86 In some ectotherms, metabolism is also regu-
lated at organ (e.g. cardiovascular modulation rates) and cellular
(e.g., mitochondrial capacities) levels, and it is always subject to
environmental temperature.86 For example, short-term exposure
to extremely high or low ambient temperature may alter the
expression of heat shock genes, thereby protecting proteins from
temperature-induced damage.86,87 Long-term exposures to
extreme ambient temperature (e.g., acclimatization) may cause
greater tolerance to subsequence thermal variation which can
alter performance and affect fitness.88-90 Many ectothermic
organisms have developed the capacity for thermal
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acclimatization and can
adjust their metabolism to
tolerate extreme tempera-
tures or seasonal varia-
tion.91-93 For instance,
some reptiles, including the
Alligator mississipiensis, pres-
ent acclimatization which,
combined with maximized
sun exposure, leads to
higher Tb’s in winter than
in summer.94

Ectotherms can maintain
their Tb within a relatively
narrow temperature range
despite the temporal and
geographic variation in the
thermal habitats they
occupy.95 Nevertheless, Tb
during inactivity and the
amount of hours of activity
exposed to a selected ambi-
ent temperature may vary
due to constrains of the specific thermal environment.96 Heat
exchange with the environment occurs via radiation, convection,
and conduction and varies in relation to body composition and
size (Fig. 2).97,98 For example, evaporative cooling in reptiles
occurs via panting which minimizes dehydration. In amphibians,

evaporative cooling can lead to dehydration if the access to water
is not available. These mechanisms of heat exchange are illus-
trated in Figure 4. With respect to body size, a higher surface to
volume ratio translates into higher rates of heat exchange and, in
amphibians, also generates higher rates of water loss. Most

Figure 4. The mechanisms of heat exchange in aquatic, diurnal, and nocturnal amphibians.

Figure 3. A conceptual model illustrating the mechanisms linking caloric restriction and reduced body temperature
(Tb) and their influence on longevity. Adapted from: Carrillo AE, Flouris AD. Caloric restriction and longevity: effects
of reduced body temperature. Aging Res Rev 2011; 10:153–62. Note: BAT D brown adipose tissue; UCP1 D uncou-
pling protein one; ROS D reactive oxygen species.
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invertebrates, fish, anurans and reptiles present an inverse rela-
tionship between ambient temperature and body size (the
“temperature size rule,” Atkinson, 1994; Atkinson & Sibly 1997)
which is commonly associated to a higher survival in cold envi-
ronments and lower predation risk (Ray, 1960; Ashton et al,
2000; Ashton and Feldman, 2003; Heinze et al, 2003). On the
other hand, body size of some diatoms (e.g., Phaeodaetylum
trieornutum), copepods (e.g., Salmineola salmoneus) mayflis of
the genus Ephemeroptera, salamanders and squamates (lizards and
snakes) generally decrease with latitude and elevation (Atkinson,
1995; Laugen et al, 2005; Pincheira-Donoso et al, 2008; Vitt
and Caldwell, 2009). The lack of a common pattern for ecto-
therms indicates a complex undetermined relationship between
size and thermoregulation and general statements cannot be
made (Angiletta and Dunham, 2003). Variation in body size in
ectotherms determine differences in the total time of exposure
(e.g., to predators, to solar radiation) and time of activity (e.g.,
foraging, mating) among populations that share the same pre-
ferred temperature and may result in variations in life-history
traits such as aging and longevity.99 Metabolic rate increases with
activity time (e.g., pursuing prey and mating) together with an
increase in energy utilization that is maximized at or near the
peak Tb.100-104 The utilized energy that is not expended will be
allocated to reproduction, growth and storage.96 Following
maturity, a pronounced reallocation of energy from maintenance
and growth to reproduction is observed; shaped by natural selec-
tion, the investments in each of these functions result in a broad
variety of life history traits and phenology (e.g., age at maturity
and longevity).105

Ectothermic mechanisms linking low Tb and longevity
Among ectotherms, variation in body size and life-history

traits – such as age at maturity and longevity – are usually highly
geographically variable and are heavily dependent on the local cli-
mate.106-108 The effects of reduced Tb on ectotherm health and
longevity have been circulating since 1917.8 In poikilotherms,
early studies showed that fish living in 15�C water lived signifi-
cantly longer than fish living in 20�C water.15 Similarly, Drosoph-
ila melanogaster was shown to live approximately twice as long at
21�C than at 27�C,109 while the lifespan of C. elegans was
increased by 75% by reducing temperature by 5�C.110

In 1960, Ray111 observed that plants and animals at low
ambient temperatures grew slowly and delayed sexual maturation
long enough to attain maturation at larger sizes than at high
ambient temperatures. One probable explanation for these find-
ings is that, since reproductive events are relatively less frequent
in colder environments, larger body size would be favored by nat-
ural selection to enhance fecundity. On the other hand, in colder
environments a larger body size at maturity is adaptive only if it
coincides with a low survivorship of adults.112 Finally, in colder
environments larger females produce larger offspring or offer bet-
ter parental care when mating with larger males.113,114 Living in
hot regions and/or having longer activity seasons allow ecto-
therms to spend more time at high Tb and this usually results in
fast growth and an early sexual maturity.99,115-118 For example,
growth rates of juvenile Lacerta vivipara, Sceloporus occidentalis,

and S. graciosus increase with daily activity time due to high Tb
via radiant heat,104,119120 while maturity may be accelerated in
laboratory animals that are maintained under optimal thermal
conditions.103,121 These mechanisms can have different effects in
individual animals within a species or population and further
research will help us understand the relationships among temper-
ature, growth rate and body size.

Growth rates and ages at metamorphosis, sexual maturation,
and death in ectotherms are associated traits that depend on met-
abolic rate.122 Due to their dependence on ambient temperature,
ectotherms exhibit significant differences between the chronolog-
ical and physiological growth and longevity. These are combined
in different ways and applied in diverse environments and are,
ultimately, linked to adaptive and evolutionary processes
imposed by natural selection.123 For instance, reproductive fit-
ness is negatively affected when delayed maturity is associated
with a short lifespan.18,112,124 In ectotherms, especially in ther-
moconformers, cold and warm ambient temperatures attenuate
and increase metabolic rate, respectively. Thermoregulatory ecto-
therms (e.g., lizards) may maintain a Tb within a narrow range
but they are subjected to seasonal and daily variations that deter-
mine their hours of activity and affect their overall growth and
lifespan. Therefore, populations of the same species may exhibit
different growth rates and longevity when inhabiting or exposed
to different environments.18,125 Nevertheless, the relationships
between Tb and metabolic rate, as well as low Tb-increase in life-
span and high Tb-premature mortality, are commonly observed
in ectotherms17 and – to date – have been generally attributed to
the link between Tb and metabolic rate.20,126

Different thermoregulatory mechanisms enable ectotherms to
influence the effect of ambient temperature over their physiologi-
cal processes (e.g., temperature-sensitive circadian mecha-
nisms).127,128 Behavioral thermoregulation is the main
mechanism by which ectotherms maintain their Tb as close as pos-
sible to an independently defined target range at which their per-
formance tends to be maximal.129-134 Given that behavioral
thermoregulation functions through conscious decisions, it can
have a significant impact on lifespan. For instance, in lizards and
fish, neurons in the preoptic hypothalamus function as feedback
reflex that direct thermoregulatory behavior135 encompassing
changes of microhabitat,136-141 site and retreat selection,134,141-144

shifts in activity hours,100-102,145-148 variations in the frequency of
exposure and duration of stays in full sun,148-151 as well as modify-
ing posture.140,143,152 Importantly, the most common thermoreg-
ulatory behavior consists in shuttling between sun and shade or
hot and cold microenvironments.153-155 For example, thermoreg-
ulatory diurnal lizards would maintain their Tb within the pre-
ferred range especially during the activity hours, basking in the sun
until they reach near-critical high Tb and shuttling to the shade to
retreat until achieving cooler Tb.90,130 Also, nocturnal geckos are
active after sunset when ambient temperature is low but they
retreat in refuge that will offer appropriate temperatures for opti-
mal physiological functioning during the day.156-158 These exam-
ples exemplify that, despite the obvious physiological benefits of
thermoregulation for ectotherms, there are also many associated
costs that ultimately affect aging and longevity.101,102,159-161 For
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example, when shuttling from sun to shade a lizard spends energy
for locomotion and the risk of being predated is increased, thus
indirectly affecting lifespan.116 Moreover, the necessity to thermo-
regulate may interfere not only in finding mates but also in forag-
ing and acquiring the food required for growth.161 Costs and
physiological benefits are independent and may vary in different
environments. The physiological optimal temperature of an organ-
ism corresponds usually to the tissue or cellular systems162 and it is
generally inferred from the animal’s preferred temperature. How-
ever, the latter is not necessarily near the ecologically optimal tem-
perature, which is more relevant when trying to understand the
whole-animal system.161,16,164 Thus, the maximal performance of
ectotherms is affected by how distant its ecologically optimal tem-
perature is from its operative temperature: whole-organismal activ-
ities, like healing and surviving rates, predation success, egg
production, metabolic scope, reproductive output, individual
growth and longevity, depend directly not only on the environ-
mental temperature but also on the efficiency of the animal’s ther-
moregulatory behavior.

Physiological adjustments associated with thermal regula-
tion in ectothermic vertebrates, such as cutaneous losses of
water, panting, salivation, and urination which are all consid-
ered evaporative cooling processes, have been described since
the early 1940s153,165 but little is known about the thermo-
regulatory pathways that are involved in these processes as
well as the way they may affect aging and longevity. Several
studies have demonstrated similarities between mammalian
and crocodilian afferent and efferent pathways (e.g., similar
cardiovascular response to peripheral temperature varia-
tion).166,167 Cardiovascular responses in other reptiles have
been reported as principally mediated by autonomic mecha-
nisms in snakes,168 countercurrent heat exchangers in desert
lizards (Phrynosoma sp., and Holbrookia sp)169 and marine tur-
tles (Chelonia mydas, and Caretta caretta),170 as well as stimu-
lated locally by prostaglandins as well as nitric oxide in
lizards (Pogona vitticeps)94 and crocodiles (Crocodylus
porosus).171 At the cellular level, variations in mitochondrial
capacity and density are observed within species that occupy
broad territories and diverse thermal environments.172,173

This mechanism was also reported for several aquatic verte-
brates like Anguilla Anguilla,174 Champsocephalus esox and
Eleginops maclovinus,172 as well as Zoarces viviparus175 and
Fundulus heteroclitus173 in response to changes in the thermal
environment.

In the summer, the cellular capacity to oxidize piruvate and
palmitoyl carnitine, associated with lower enzyme activities, in
the red muscle of Oncorhynchus mykiss is reduced176 and, conse-
quently, reaction rates and mitochondrial capacity are main-
tained constant throughout the year despite the difference of
15�C in Tb found between summer and winter.177 A complex
network of sensory, neural, hormonal, and effector systems pro-
vide the means by which ectotherms sense and respond to envi-
ronmental factors that may impose upon their thermal biology
and longevity.178 Experiments in the soil nematode Caenorhabdi-
tis elegans suggested that thermosensory neurons evolved in order
to prevent lifespan reductions in warm environments by means

of inhibiting thermosensory neurons through mutations or laser
ablation.20 At high ambient temperatures the amphid neurons
with finger-like ciliated endings promote the transcription of
the daf-9 gene, responsible for increasing the production of
steroid hormone. The activation of the steroid signaling path-
way blocks the activity of the DAF-12 nuclear hormone
receptor and, thus, contributes to the observed anti-aging
effects.17 Another example is the positive effect of corticoste-
rone on metabolic rate and Tb. In stressful situations the
hypothalamus-pituitary-adrenal axis is activated and cortico-
sterone is secreted in the blood stream, which promotes
behavioral and physiological processes associated with survival
mechanisms (e.g., appetite, cardiovascular functions).179,180

In some reptiles, this hormone is also found in the plasma in
benign environments, yet the reasons for this phenomenon
remain unclear.181 In the New Zealand common gecko, Hop-
lodactylus maculatus, the variation in non-stress-induced corti-
costerone is correlated with the variation in Tb.182,183 Similar
corticosterone-Tb correlations were found in green turtles
(Chelonia mydas),184 in male tautara (Sphenodon punctatus),185

and in the marine iguana (Amblyrhynchus cristatus).186 Geckos
implanted with corticosterone would consume oxygen at a
rate of 50% higher that the placebo geckos, display heat-seek-
ing behaviors, present a higher Tb in their terraria and
selected higher ambient temperature when in thermal gra-
dients.187 This mechanism might be of significance for the
survival and lifespan of ectotherms inhabiting non stable
environments with ample thermal daily and seasonal varia-
tions.187 In the last decade, studies focusing on specific ther-
moregulatory mechanisms and innate factors that may be
directly associated with longevity in ectotherms have flour-
ished, yet many of the interactions between the physiological
and ecological processes involved remain unclear.

Thermal plasticity and the efficiency of thermoregulation
through physiological and behavioral mechanisms may compen-
sate for environmental extreme conditions that could affect
growth, aging and longevity, and subsequently fitness. Natural
selection may favor changes in the physiology that determine the
efficiency with which resources are assimilated and used for
growth, therefore, promoting faster growth through thermal spe-
cialization.188 To date, our knowledge on the interaction of these
factors within the populations of ectothermic vertebrates remains
limited and encourages us to pursue ways to further understand
the natural framework in which the temperature-size relation-
ships have evolved.

Comparative Remarks

The mechanisms through which thermoregulation may be
implicated in the aging process in endotherms and ectotherms
are illustrated in Figure 5. In endotherms, low Tb has been
shown to extend life span by augmenting resistance to environ-
mental stressors38,39 and by exploiting metabolic pathways that
are known to attenuate autoimmunity in old age.38 In addition,
low Tb has been shown to favorably influence immune
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function,40 but this link is not completely understood, while the
connections between inflammation and/or immune function
with low Tb appear to depend on the severity of the stress
imposed as well as the acclimation level of the individual.53-55

The beneficial effects of low Tb may be also exerted during preg-
nancy and early development which are known to generate struc-
tural, functional, and metabolic changes in adult life.56 One
example of early-life programming that may be beneficial for
long-term health and longevity pertains to brown adipose tissue
which is maximally recruited at birth in response to the cold chal-
lenge of the extra-uterine environment.65 While the link between
early life Tb and later life brown adipose tissue function requires
further research, enhanced activity of uncoupling proteins (par-
ticularly uncoupling protein 1 that is expressed in brown adipose
tissue) are known to attenuate production of reactive oxygen spe-
cies which, in turn, benefit longevity.68 Finally, increased body
mass72,73 and obesity74 are associated with higher Tb indepen-
dently of age, while reduced white adipose tissue content in low
Tb animals is a relevant consistency that has significant life-pro-
longing implications.3

Among ectotherms, variation in body size and life-history
traits – such as age at maturity and longevity – are usually highly
geographically variable and are heavily dependent on local cli-
mate.106-108 Ectothermic plants and animals at low ambient tem-
peratures grow slowly and delay sexual maturation long enough
to attain maturation at larger sizes than at high ambient tempera-
tures.111 Moreover, larger body size is favored by natural selec-
tion to enhance fecundity.111 On the other hand, living in hot
regions and/or having longer activity seasons allow ectotherms to
spend more time at high Tb and this generally results in fast
growth and an early sexual maturity.99,115-118 These processes as
well as the relationships between temperature and metabolic rate,

low temperature-increase in lifespan and high temperature-
premature mortality are generally attributed to the link
between Tb and metabolic rate.17,20,122,126 Another link
between thermoregulation and aging in ectotherms relates to
the fact that behavioral thermoregulation functions through
conscious decisions that, ultimately, affect aging and longev-
ity.101,102,159-161 For example, when shuttling from sun to
shade a lizard spends energy for locomotion and the risk of
being predated is increased, thus indirectly affecting life-
span.116 In this light, the maximal performance of ectotherms
is affected by how distant its ecologically optimal temperature
is from its operative temperature: whole-organismal activities
including healing and surviving rates, predation success, egg
production, metabolic scope, reproductive output, individual
growth and longevity, depend directly not only on the envi-
ronmental temperature but also on the efficiency of the ani-
mal’s thermoregulatory behavior. Finally, recent studies in C.
elegans showed that the sensation of heat via thermosensory
neurons may affect lifespan. This suggests that thermal sensa-
tion serves as a vital input for organismal homeostasis, in
addition to its role in regulating behavioral and autonomic
thermoregulation.

Concluding Remarks

Our aim in this review is to present, discuss, and scruti-
nize the thermoregulatory mechanisms that are implicated in
the aging process in endotherms and ectotherms. Our analysis
demonstrates that low Tb benefits lifespan in both endother-
mic3,9-13 and ectothermic14-18 organisms. Research in endo-
therms has delved deeper into the physiological and

Figure 5. The mechanisms through which thermoregulation may be implicated in the aging process in endotherms (A) and ectotherms (B).
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molecular mechanisms linking Tb and longevity. Our knowl-
edge on the physiological and molecular pathways linking Tb
and longevity in ectotherms has been steadily increasing dur-
ing the past decades, yet further mechanistic work is required
in order to fully elucidate the underlying phenomena. What
is abundantly clear is that both endotherms and ectotherms
have a specific temperature zone at which they function opti-
mally.18,189-192 This zone is defended through both physio-
logical166,167,193,194 and behavioral135-141,195,196 means and
plays a major role on organismal senescence.3,17,20,21

That low Tb may be beneficial for lifespan is contrary to
conventional medical theory where reduced Tb is usually
considered as a sign of underlying pathology.32-37 Regardless,
this phenomenon has been targeted by scientists with the
expectation that advancements may compress morbidity, as
well as lower disease and mortality risk. In his 1978 article10

in Geriatrics, Saul Kent wrote that “it is possible that lowered
body temperature may prolong the human life span; finding
the key to temperature regulation remains the problem, but
the search is on.” Thirty-seven years later we are still far
from a complete understanding of the mechanisms linking
Tb and longevity, but we are getting closer.
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